Main Article Content
Abstract
The COVID-19 pandemic continues and fluctuates posing unprecedented challenges to global healthcare systems, requiring a comprehensive understanding of viral and microbial interactions within infected individuals. Metagenomics, a powerful tool for analyzing genetic material from diverse microorganisms, has emerged as a promising approach for uncovering co-infections in COVID-19 patients. This review aims to assess the current state of metagenomics-based studies focused on identifying co-infections in COVID-19 patients. Methods: This study is a review of the literature collected from the search engine Google Scholar and PubMed Electronic Database with the keywords: “COVID-19”, “Co-infection”, and “Metagenomics”. We looked for publications published in any language between 2020 and 2023. We obtained the original articles of each relevant and reported research design, and 21 eligible articles were found for inclusion in the analysis. Co-infection has been shown in several studies to exacerbate patient clinical problems to varying degrees. Metagenomic next-generation sequencing (mNGS) technology can simultaneously show all infections present in organisms. Metagenomics analysis has increased the diagnostic level of the pathogen and provided valuable insights into the microbial landscape of COVID-19 patients, uncovering the prevalence and impact of co-infections.
Keywords
Article Details
References
- Al-Emran, H. M., Rahman, S., Hasan, M. S., Ul Alam, R., Islam, O. K., Anwar, A., … Hossain, A. (2023). Microbiome analysis revealing microbial interactions and secondary bacterial infections in COVID-19 patients comorbidly affected by Type 2 diabetes. Journal of Medical Virology, 95(1), 1–12. https://doi.org/10.1002/jmv.28234
- Babiker, A., Bradley, H. L., Stittleburg, V. D., Ingersoll, J. M., Key, A., Kraft, C. S., … Piantadosi, A. (2021). Metagenomic sequencing to detect respiratory viruses in persons under investigation for COVID-19. Journal of Clinical Microbiology, 59(1), 1–6. https://doi.org/10.1128/JCM.02142-20
- Bao, L., Zhang, C., Dong, J., Zhao, L., Li, Y., & Sun, J. (2020). Oral Microbiome and SARS-CoV-2: Beware of
- Lung Co-infection. Frontiers in Microbiology, 11, 1840. https://doi.org/10.3389/fmicb.2020.01840
- Casta, D., Kamaliddin, C., Oberding, L., Liu, Y., Mohon,
- A. N., Faridi, R. M., … Pillai, D. R. (2021). A metagenomics workflow for SARS- CoV-2 identification, co-pathogen detection, and overall diversity. Journal of Clinical Virology, 145. https://doi.org/10.1016/j.jcv.2021.105025
- Charalampous, T., Alcolea-Medina, A., Snell, L. B., Williams, T. G. S., Batra, R., Alder, C., … Edgeworth,
- J. D. (2021). Evaluating the potential for respiratory metagenomics to improve treatment of secondary infection and detection of nosocomial transmission on expanded COVID-19 intensive care units. Genome Medicine, 13(1), 1–16. https://doi.org/10.1186/s13073- 021-00991-y
- Chen, S., Zhu, Q., Xiao, Y., Wu, C., Jiang, Z., Liu, L., & Qu, J. (2021). Clinical and etiological analysis of co- infections and secondary infections in COVID-19 patients: An observational study. Clinical Respiratory Journal, 15(7), 815–825.
- https://doi.org/10.1111/crj.13369
- Chong, Y. M., Chan, Y. F., Jamaluddin, M. F. H., Hasan, M. S., Pang, Y. K., Ponnampalavanar, S., … I-Ching Sam. (2020). Detection of respiratory viruses in adults with suspected COVID-19 in Kuala Lumpur, Malaysia. Journal of Clinical Virology, (January).
- Devi, P., Maurya, R., Mehta, P., Shamim, U., Yadav, A., Chattopadhyay, P., … Pandey, R. (2022). Increased Abundance of Achromobacter xylosoxidans and Bacillus cereus in Upper Airway Transcriptionally Active Microbiome of COVID-19 Mortality Patients Indicates Role of Co-Infections in Disease Severity and Outcome. Microbiology Spectrum, 10(3), 1–19. https://doi.org/10.1128/spectrum.02311-21
- Esakandari, H., Nabi-Afjadi, M., Fakkari-Afjadi, J., Farahmandian, N., Miresmaeili, S. M., & Bahreini, E. (2020). A comprehensive review of COVID-19 characteristics. Biological Procedures Online, 22(1), 1–
- https://doi.org/10.1186/s12575-020-00128-2
- Faridl, M., Mellyani, K., Khoirunnisa, K., & Septiani, P. (2020). RNA sequence analysis of nasopharyngeal swabs from asymptomatic and mildly symptomatic patients with COVID-19. International Journal of Infectious Diseases, (January).
- Fomsgaard, A. S., Rasmussen, M., Spiess, K., Fomsgaard, A., Belsham, G. J., & Fonager, J. (2022). Improvements in metagenomic virus detection by simple pretreatment methods. Journal of Clinical Virology Plus, 2(4), 100120. https://doi.org/10.1016/j.jcvp.2022.100120
- Gao, Z., Yu, L., Cao, L., Yang, M., Li, Y., Lan, Y., … Deng, S. (2023). Analysis of coexisting pathogens in nasopharyngeal swabs from COVID-19. Frontiers in Cellular and Infection Microbiology, 13(June), 1–11. https://doi.org/10.3389/fcimb.2023.1140548
- Guo, M., Gao, M., Gao, J., Zhang, T., Jin, X., Fan, J., … Zhu, Z. (2021). Identifying Risk Factors for Secondary Infection Post-SARS-CoV-2 Infection in Patients with Severe and Critical COVID-19. Frontiers in Immunology, 12.
- https://doi.org/10.3389/fimmu.2021.715023
- Hall, R. J., Wang, J., Todd, A. K., Bissielo, A. B., Yen, S., Strydom, H., … Peacey, M. (2014). Evaluation ofrapid and simple techniques for the enrichment of viruses prior to metagenomic virus discovery. Journal of Virological Methods, 195, 194–204. https://doi.org/10.1016/j.jviromet.2013.08.035
- Hoque, M. N., Rahman, M. S., Hossain, A., Khan, M. S., Islam, T., Mujibur, B. S., … Officer, P. S. (2022). Metagenomic analysis reveals the abundance and diversity of opportunistic fungal pathogens in the nasopharyngeal tract of COVID-19 patients. BioRxiv Preprint.
- Iša, P., Taboada, B., García-López, R., Boukadida, C., Ramírez-González, J. E., Vázquez-Pérez, J. A., … Arias, C. F. (2022). Metagenomic analysis reveals differences in the co- occurrence and abundance of viral species in SARS-CoV-2 patients with different severity of disease. BMC Infectious Diseases, 22(1), 1–12. https://doi.org/10.1186/s12879-022-07783-8
- Ma, S., Zhang, F., Zhou, F., Li, H., Ge, W., Gan, R., … Huang, Z. (2021). Metagenomic analysis reveals oropharyngeal microbiota alterations in patients with COVID-19. Signal Transduction and Targeted Therapy,
- (1). https://doi.org/10.1038/s41392-021-00614-3
- Man, W. H., de Steenhuijsen Piters, W. A. A., & Bogaert, D. (2017). The microbiota of the respiratory tract: gatekeeper to respiratory health. Nature Reviews. Microbiology, 15(5), 259–270. https://doi.org/10.1038/nrmicro.2017.14
- Mehta, P., Sahni, S., Siddiqui, S., Mishra, N., & Sharma, P. (2021). Respiratory Co-Infections: Modulators of SARS-CoV-2 Patients’ Clinical Sub-Phenotype. Frontiers in Microbiology, 12(May),1–16. https://doi.org/10.3389/fmicb.2021.653399
- Miao, Q., Ma, Y., Ling, Y., Jin, W., Su, Y., Wang, Q., … Hu, B. (2021). Evaluation of superinfection, antimicrobial usage, and airway microbiome with metagenomic sequencing in COVID-19 patients: A cohort study in Shanghai. Journal of Microbiology, Immunology and Infection, 54(180). https://doi.org/10.1016/j.jmii.2021.03.015
- Molina-Mora, J. A., Cordero-Laurent, E., Calderón- Osorno, M., Chacón-Ramírez, E., & Duarte- Martínez, F. (2022). Metagenomic pipeline for identifying co- infections among distinct SARS-CoV-2 variants of concern: study cases from Alpha to Omicron. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598- 022-13113-4
- Mostafa, H. H., Fissel, J. A., Fanelli, B., Bergman, Y., Gniazdowski, V., Dadlani, M., … Simner, P. J. (2020). Metagenomic next-generation sequencing of nasopharyngeal specimens collected from confirmed and suspect covid-19 patients. MBio, 11(6),
- –13. https://doi.org/10.1128/mBio.01969-20
- Pittet, L. A., Hall-Stoodley, L., Rutkowski, M. R., & Harmsen, A. G. (2010). Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. American Journal of Respiratory Cell and Molecular Biology, 42(4), 450–460. https://doi.org/10.1165/rcmb.2007-0417OC
- Rouchka, E. C., Chariker, J. H., Alejandro, B., Adcock, R. S., Singhal, R., Ramirez, J., … Chung, D. (2021). Induction of interferon response by high viral loads at early stage infection may protect against severe outcomes in COVID-19 patients. Scientific Reportscc11(1). https://doi.org/10.1038/s41598-021- 95197- y
- Shah, S. J., Barish, P. N., Prasad, P. A., Kistler, A., Neff, N., Kamm, J., … Phelps, M. (2020). illness: a comparison of patients with and without COVID-19. EClinicalMedicine.
- Tsang, T. K., Lee, K. H., Foxman, B., Balmaseda, A., Gresh, L., Sanchez, N., … Gordon, A. (2020). Association Between the Respiratory Microbiome and Susceptibility to Influenza Virus Infection. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 71(5), 1195– 1203. https://doi.org/10.1093/cid/ciz968
- Xiaofang, J., Xiaonan, Z., Yun, L., Xinyu, Z., Di, T., Yixin, L., … Hongzhou, L. (2021). Application of nanopore sequencing in diagnosis of secondary infections in patients with severe COVID-19. Journal of Zhejiang University(Medical Sciences), 2–8.
- Yasir, M., Al-Sharif, H. A., Al-Subhi, T., Sindi, A, A., Bokhary, D. H., El-Daly, M. M., … Azhar, E. I. 2023). Analysis of the nasopharyngeal microbiome and respiratory pathogens in COVID-19 patients from Saudi Arabia. Journal of Infection and Public Health, 16(5), 680–688.
- https://doi.org/10.1016/j.jiph.2023.03.001
- Zhang, H., Zhang, Y., Wu, J., Li, Y., Zhou, X., Li, X.,… Zhang, W. (2020). Risks and features of secondary infections in severe and critical ill COVID-19 patients. Emerging Microbes and Infections, 9(1),
- –1964.https://doi.org/10.1080/22221751.2020.18124 37
- Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A,Y. L., Zhan, H., … Ng, S. C. (2020). Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 159(3), 944- 955.e8. https://doi.org/10.1053/j.gastro.2020.05.048
References
Al-Emran, H. M., Rahman, S., Hasan, M. S., Ul Alam, R., Islam, O. K., Anwar, A., … Hossain, A. (2023). Microbiome analysis revealing microbial interactions and secondary bacterial infections in COVID-19 patients comorbidly affected by Type 2 diabetes. Journal of Medical Virology, 95(1), 1–12. https://doi.org/10.1002/jmv.28234
Babiker, A., Bradley, H. L., Stittleburg, V. D., Ingersoll, J. M., Key, A., Kraft, C. S., … Piantadosi, A. (2021). Metagenomic sequencing to detect respiratory viruses in persons under investigation for COVID-19. Journal of Clinical Microbiology, 59(1), 1–6. https://doi.org/10.1128/JCM.02142-20
Bao, L., Zhang, C., Dong, J., Zhao, L., Li, Y., & Sun, J. (2020). Oral Microbiome and SARS-CoV-2: Beware of
Lung Co-infection. Frontiers in Microbiology, 11, 1840. https://doi.org/10.3389/fmicb.2020.01840
Casta, D., Kamaliddin, C., Oberding, L., Liu, Y., Mohon,
A. N., Faridi, R. M., … Pillai, D. R. (2021). A metagenomics workflow for SARS- CoV-2 identification, co-pathogen detection, and overall diversity. Journal of Clinical Virology, 145. https://doi.org/10.1016/j.jcv.2021.105025
Charalampous, T., Alcolea-Medina, A., Snell, L. B., Williams, T. G. S., Batra, R., Alder, C., … Edgeworth,
J. D. (2021). Evaluating the potential for respiratory metagenomics to improve treatment of secondary infection and detection of nosocomial transmission on expanded COVID-19 intensive care units. Genome Medicine, 13(1), 1–16. https://doi.org/10.1186/s13073- 021-00991-y
Chen, S., Zhu, Q., Xiao, Y., Wu, C., Jiang, Z., Liu, L., & Qu, J. (2021). Clinical and etiological analysis of co- infections and secondary infections in COVID-19 patients: An observational study. Clinical Respiratory Journal, 15(7), 815–825.
https://doi.org/10.1111/crj.13369
Chong, Y. M., Chan, Y. F., Jamaluddin, M. F. H., Hasan, M. S., Pang, Y. K., Ponnampalavanar, S., … I-Ching Sam. (2020). Detection of respiratory viruses in adults with suspected COVID-19 in Kuala Lumpur, Malaysia. Journal of Clinical Virology, (January).
Devi, P., Maurya, R., Mehta, P., Shamim, U., Yadav, A., Chattopadhyay, P., … Pandey, R. (2022). Increased Abundance of Achromobacter xylosoxidans and Bacillus cereus in Upper Airway Transcriptionally Active Microbiome of COVID-19 Mortality Patients Indicates Role of Co-Infections in Disease Severity and Outcome. Microbiology Spectrum, 10(3), 1–19. https://doi.org/10.1128/spectrum.02311-21
Esakandari, H., Nabi-Afjadi, M., Fakkari-Afjadi, J., Farahmandian, N., Miresmaeili, S. M., & Bahreini, E. (2020). A comprehensive review of COVID-19 characteristics. Biological Procedures Online, 22(1), 1–
https://doi.org/10.1186/s12575-020-00128-2
Faridl, M., Mellyani, K., Khoirunnisa, K., & Septiani, P. (2020). RNA sequence analysis of nasopharyngeal swabs from asymptomatic and mildly symptomatic patients with COVID-19. International Journal of Infectious Diseases, (January).
Fomsgaard, A. S., Rasmussen, M., Spiess, K., Fomsgaard, A., Belsham, G. J., & Fonager, J. (2022). Improvements in metagenomic virus detection by simple pretreatment methods. Journal of Clinical Virology Plus, 2(4), 100120. https://doi.org/10.1016/j.jcvp.2022.100120
Gao, Z., Yu, L., Cao, L., Yang, M., Li, Y., Lan, Y., … Deng, S. (2023). Analysis of coexisting pathogens in nasopharyngeal swabs from COVID-19. Frontiers in Cellular and Infection Microbiology, 13(June), 1–11. https://doi.org/10.3389/fcimb.2023.1140548
Guo, M., Gao, M., Gao, J., Zhang, T., Jin, X., Fan, J., … Zhu, Z. (2021). Identifying Risk Factors for Secondary Infection Post-SARS-CoV-2 Infection in Patients with Severe and Critical COVID-19. Frontiers in Immunology, 12.
https://doi.org/10.3389/fimmu.2021.715023
Hall, R. J., Wang, J., Todd, A. K., Bissielo, A. B., Yen, S., Strydom, H., … Peacey, M. (2014). Evaluation ofrapid and simple techniques for the enrichment of viruses prior to metagenomic virus discovery. Journal of Virological Methods, 195, 194–204. https://doi.org/10.1016/j.jviromet.2013.08.035
Hoque, M. N., Rahman, M. S., Hossain, A., Khan, M. S., Islam, T., Mujibur, B. S., … Officer, P. S. (2022). Metagenomic analysis reveals the abundance and diversity of opportunistic fungal pathogens in the nasopharyngeal tract of COVID-19 patients. BioRxiv Preprint.
Iša, P., Taboada, B., García-López, R., Boukadida, C., Ramírez-González, J. E., Vázquez-Pérez, J. A., … Arias, C. F. (2022). Metagenomic analysis reveals differences in the co- occurrence and abundance of viral species in SARS-CoV-2 patients with different severity of disease. BMC Infectious Diseases, 22(1), 1–12. https://doi.org/10.1186/s12879-022-07783-8
Ma, S., Zhang, F., Zhou, F., Li, H., Ge, W., Gan, R., … Huang, Z. (2021). Metagenomic analysis reveals oropharyngeal microbiota alterations in patients with COVID-19. Signal Transduction and Targeted Therapy,
(1). https://doi.org/10.1038/s41392-021-00614-3
Man, W. H., de Steenhuijsen Piters, W. A. A., & Bogaert, D. (2017). The microbiota of the respiratory tract: gatekeeper to respiratory health. Nature Reviews. Microbiology, 15(5), 259–270. https://doi.org/10.1038/nrmicro.2017.14
Mehta, P., Sahni, S., Siddiqui, S., Mishra, N., & Sharma, P. (2021). Respiratory Co-Infections: Modulators of SARS-CoV-2 Patients’ Clinical Sub-Phenotype. Frontiers in Microbiology, 12(May),1–16. https://doi.org/10.3389/fmicb.2021.653399
Miao, Q., Ma, Y., Ling, Y., Jin, W., Su, Y., Wang, Q., … Hu, B. (2021). Evaluation of superinfection, antimicrobial usage, and airway microbiome with metagenomic sequencing in COVID-19 patients: A cohort study in Shanghai. Journal of Microbiology, Immunology and Infection, 54(180). https://doi.org/10.1016/j.jmii.2021.03.015
Molina-Mora, J. A., Cordero-Laurent, E., Calderón- Osorno, M., Chacón-Ramírez, E., & Duarte- Martínez, F. (2022). Metagenomic pipeline for identifying co- infections among distinct SARS-CoV-2 variants of concern: study cases from Alpha to Omicron. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598- 022-13113-4
Mostafa, H. H., Fissel, J. A., Fanelli, B., Bergman, Y., Gniazdowski, V., Dadlani, M., … Simner, P. J. (2020). Metagenomic next-generation sequencing of nasopharyngeal specimens collected from confirmed and suspect covid-19 patients. MBio, 11(6),
–13. https://doi.org/10.1128/mBio.01969-20
Pittet, L. A., Hall-Stoodley, L., Rutkowski, M. R., & Harmsen, A. G. (2010). Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. American Journal of Respiratory Cell and Molecular Biology, 42(4), 450–460. https://doi.org/10.1165/rcmb.2007-0417OC
Rouchka, E. C., Chariker, J. H., Alejandro, B., Adcock, R. S., Singhal, R., Ramirez, J., … Chung, D. (2021). Induction of interferon response by high viral loads at early stage infection may protect against severe outcomes in COVID-19 patients. Scientific Reportscc11(1). https://doi.org/10.1038/s41598-021- 95197- y
Shah, S. J., Barish, P. N., Prasad, P. A., Kistler, A., Neff, N., Kamm, J., … Phelps, M. (2020). illness: a comparison of patients with and without COVID-19. EClinicalMedicine.
Tsang, T. K., Lee, K. H., Foxman, B., Balmaseda, A., Gresh, L., Sanchez, N., … Gordon, A. (2020). Association Between the Respiratory Microbiome and Susceptibility to Influenza Virus Infection. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 71(5), 1195– 1203. https://doi.org/10.1093/cid/ciz968
Xiaofang, J., Xiaonan, Z., Yun, L., Xinyu, Z., Di, T., Yixin, L., … Hongzhou, L. (2021). Application of nanopore sequencing in diagnosis of secondary infections in patients with severe COVID-19. Journal of Zhejiang University(Medical Sciences), 2–8.
Yasir, M., Al-Sharif, H. A., Al-Subhi, T., Sindi, A, A., Bokhary, D. H., El-Daly, M. M., … Azhar, E. I. 2023). Analysis of the nasopharyngeal microbiome and respiratory pathogens in COVID-19 patients from Saudi Arabia. Journal of Infection and Public Health, 16(5), 680–688.
https://doi.org/10.1016/j.jiph.2023.03.001
Zhang, H., Zhang, Y., Wu, J., Li, Y., Zhou, X., Li, X.,… Zhang, W. (2020). Risks and features of secondary infections in severe and critical ill COVID-19 patients. Emerging Microbes and Infections, 9(1),
–1964.https://doi.org/10.1080/22221751.2020.18124 37
Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A,Y. L., Zhan, H., … Ng, S. C. (2020). Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 159(3), 944- 955.e8. https://doi.org/10.1053/j.gastro.2020.05.048